Provably Efficient Reinforcement Learning with Linear Function Approximation under Adaptivity Constraints

Tianhao Wang^{1,*} and Dongruo Zhou^{2,*} and Quanquan Gu²

¹Department of Statistics and Data Science, Yale University ²Department of Computer Science, University of California, Los Angeles

Problem Setting

Episodic Markov Decision Processes: $\mathcal{M}(\mathcal{S},\mathcal{A},H,\{r_h\}_{h=1}^H,\{\mathbb{P}_h\}_{h=1}^H)$

- \triangleright State space S, action space A
- \triangleright Reward function $r_h : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$
- \triangleright Transition probability function $\mathbb{P}_h(s' \mid s,a)$
- \triangleright Episode length H
- **Policy:** A policy π consists of H mappings, $\{\pi_h\}_{h=1}^H$, from S to A
- Goal: Find a policy to maximize the return
- **INTE Value function:** Expected accumulative reward for policy $\pi: V_1^{\pi}$ $I_1^{\tau \pi}(s) = \mathbb{E} \big[\sum_{h=1}^H \mathbb{E}[f](s) \big]$ $\frac{H}{h=1}\,r_h(s_h,\pi_h(s_h))|s_1=s\big]$
- **IN Regret:** The sum of sub-optimality over K episodes

- \blacktriangleright Adaptivity constraint: Given the number of episode K , there is a hard budget B on the number of policy switches: $\sum_{k=1}^{K-1} 1\{\pi^k \neq \pi^{k+1}\} \leq B$
- **Batch learning model:** policy switches only happen at prefixed grids $1 = t_1 < \cdots < t_B < t_{B+1} = K + 1$
- \triangleright Rare policy switch model: the agent can adaptivel choose when to switch the policy

Assumptions

 \triangleright Linear MDPs: Assume there exist unknown measure $\{\boldsymbol{\mu}_h = (\boldsymbol{\mu})\}$ (1) h $, \ldots, \boldsymbol{\mu}$ (d) h $\{\bm \theta_h\}_{h=1}^H$, unknown vectors $\{\bm \theta_h\}_{h=1}^H$, and a known feature mapping $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$, s.t. $\triangleright \; \; \mathbb{P}_h(s' | s, a) = \langle \boldsymbol{\phi}(s, a), \boldsymbol{\mu}_h(s') \rangle$ $\triangleright \ \ r_h(s,a) = \big<\boldsymbol{\phi}(s,a), \boldsymbol{\theta}_h\big> \big>$ for each $h \in [H]$.

$$
\mathsf{Regret}(T) = \sum_{k=1}^K V_1^*(s_1^k) - V_1^{\pi^k}(s_1^k),
$$

where $T = KH$ and V_1^* $I_1^{**}(s_t) = \sup_{\pi} V_1^{\pi}$ $\frac{7\pi}{1}(S_t)$

Conference on Learning Theory. PMLR.