
Provably Efficient Reinforcement Learning with
Linear Function Approximation under Adaptivity

Constraints

Tianhao Wang1 Dongruo Zhou2 Quanquan Gu2

1Department of Statistics and Data Science, Yale
2Department of Computer Science, UCLA

NeurIPS 2021



Outline

Motivation: adaptivity constraints in Reinforcement Learning

Problem setting

Main results: algorithm and analysis

Numerical experiment

Conclusion



(Online) Reinforcement Learning

In online Reinforcement Learning (RL), one of the most important
tasks is to learn the optimal policy which maximizes the long-term
cumulative rewards:

By Megajuice - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=57895741

https://commons.wikimedia.org/w/index.php?curid=57895741


Adaptivity constraints in RL

Typical online RL algorithm: execute policy 
 update policy

• In practice, updating the policy might incur costs and there
could be hard budget in this regard

• E.g., clinical trials

• It is preferable to switch the policy less frequently instead of
episodically

• The limited adaptivity setting has been studied for many online
learning scenarios including PFE (Kalai and Vempala, 2005),
MAB (Arora et al., 2012), etc.

• A similar concept is known as low switching cost in RL (Bai
et al., 2019), but the goal there is to achieve Õ(

√
K ) regret with

as few policy switches as possible



Adaptivity constraints in RL

Typical online RL algorithm: execute policy 
 update policy

• In practice, updating the policy might incur costs and there
could be hard budget in this regard

• E.g., clinical trials

• It is preferable to switch the policy less frequently instead of
episodically

• The limited adaptivity setting has been studied for many online
learning scenarios including PFE (Kalai and Vempala, 2005),
MAB (Arora et al., 2012), etc.

• A similar concept is known as low switching cost in RL (Bai
et al., 2019), but the goal there is to achieve Õ(

√
K ) regret with

as few policy switches as possible



Adaptivity constraints in RL

Typical online RL algorithm: execute policy 
 update policy

• In practice, updating the policy might incur costs and there
could be hard budget in this regard

• E.g., clinical trials

• It is preferable to switch the policy less frequently instead of
episodically

• The limited adaptivity setting has been studied for many online
learning scenarios including PFE (Kalai and Vempala, 2005),
MAB (Arora et al., 2012), etc.

• A similar concept is known as low switching cost in RL (Bai
et al., 2019), but the goal there is to achieve Õ(

√
K ) regret with

as few policy switches as possible



Adaptivity constraints in RL

Typical online RL algorithm: execute policy 
 update policy

• In practice, updating the policy might incur costs and there
could be hard budget in this regard

• E.g., clinical trials

• It is preferable to switch the policy less frequently instead of
episodically

• The limited adaptivity setting has been studied for many online
learning scenarios including PFE (Kalai and Vempala, 2005),
MAB (Arora et al., 2012), etc.

• A similar concept is known as low switching cost in RL (Bai
et al., 2019), but the goal there is to achieve Õ(

√
K ) regret with

as few policy switches as possible



Adaptivity constraints in RL

Typical online RL algorithm: execute policy 
 update policy

• In practice, updating the policy might incur costs and there
could be hard budget in this regard

• E.g., clinical trials

• It is preferable to switch the policy less frequently instead of
episodically

• The limited adaptivity setting has been studied for many online
learning scenarios including PFE (Kalai and Vempala, 2005),
MAB (Arora et al., 2012), etc.

• A similar concept is known as low switching cost in RL (Bai
et al., 2019), but the goal there is to achieve Õ(

√
K ) regret with

as few policy switches as possible



Our setting: limited number of policy updates

Given the number of episodes K , assume that there is a hard
budget B on the number of policy switches:

K−1∑
k=1

1{πk 6= πk+1} ≤ B

We consider two models of interest:

• Batch learning model: policy switches only happen at the
prefixed grids 1 = t1 < · · · < tB < tB+1 = K + 1

• Rare policy switch model: the agent can adaptively choose when
to switch the policy

We study the above two models in the context of linear MDPs,
beyond tabular MDPs studied in Bai et al. (2019)



Our setting: limited number of policy updates

Given the number of episodes K , assume that there is a hard
budget B on the number of policy switches:

K−1∑
k=1

1{πk 6= πk+1} ≤ B

We consider two models of interest:

• Batch learning model: policy switches only happen at the
prefixed grids 1 = t1 < · · · < tB < tB+1 = K + 1

• Rare policy switch model: the agent can adaptively choose when
to switch the policy

We study the above two models in the context of linear MDPs,
beyond tabular MDPs studied in Bai et al. (2019)



Our setting: limited number of policy updates

Given the number of episodes K , assume that there is a hard
budget B on the number of policy switches:

K−1∑
k=1

1{πk 6= πk+1} ≤ B

We consider two models of interest:

• Batch learning model: policy switches only happen at the
prefixed grids 1 = t1 < · · · < tB < tB+1 = K + 1

• Rare policy switch model: the agent can adaptively choose when
to switch the policy

We study the above two models in the context of linear MDPs,
beyond tabular MDPs studied in Bai et al. (2019)



Our setting: limited number of policy updates

Given the number of episodes K , assume that there is a hard
budget B on the number of policy switches:

K−1∑
k=1

1{πk 6= πk+1} ≤ B

We consider two models of interest:

• Batch learning model: policy switches only happen at the
prefixed grids 1 = t1 < · · · < tB < tB+1 = K + 1

• Rare policy switch model: the agent can adaptively choose when
to switch the policy

We study the above two models in the context of linear MDPs,
beyond tabular MDPs studied in Bai et al. (2019)



Linear Markov Decision Process (MDP)

We consider the setting of linear MDP (Yang and Wang, 2019; Jin
et al., 2020) where both the transition probabilities and reward
functions can be linearly parametrized as

Ph(s ′|s, a) = 〈φ(s, a),µh(s ′)〉, rh(s, a) = 〈φ(s, a),θh〉.

• Any tabular MDP is a linear MDP with one-hot features

• The action-value function Qπ
h (s, a) is also linear in the feature

mapping φ (Jin et al., 2020), i.e., ∃wπ
h s.t.

Qπ
h (s, a) = 〈φ(s, a),wπ

h 〉

• We adapt the original LSVI-UCB algorithm (Jin et al., 2020) to
allow for adaptivity constraints



Linear Markov Decision Process (MDP)

We consider the setting of linear MDP (Yang and Wang, 2019; Jin
et al., 2020) where both the transition probabilities and reward
functions can be linearly parametrized as

Ph(s ′|s, a) = 〈φ(s, a),µh(s ′)〉, rh(s, a) = 〈φ(s, a),θh〉.

• Any tabular MDP is a linear MDP with one-hot features

• The action-value function Qπ
h (s, a) is also linear in the feature

mapping φ (Jin et al., 2020), i.e., ∃wπ
h s.t.

Qπ
h (s, a) = 〈φ(s, a),wπ

h 〉

• We adapt the original LSVI-UCB algorithm (Jin et al., 2020) to
allow for adaptivity constraints



Linear Markov Decision Process (MDP)

We consider the setting of linear MDP (Yang and Wang, 2019; Jin
et al., 2020) where both the transition probabilities and reward
functions can be linearly parametrized as

Ph(s ′|s, a) = 〈φ(s, a),µh(s ′)〉, rh(s, a) = 〈φ(s, a),θh〉.

• Any tabular MDP is a linear MDP with one-hot features

• The action-value function Qπ
h (s, a) is also linear in the feature

mapping φ (Jin et al., 2020), i.e., ∃wπ
h s.t.

Qπ
h (s, a) = 〈φ(s, a),wπ

h 〉

• We adapt the original LSVI-UCB algorithm (Jin et al., 2020) to
allow for adaptivity constraints



Linear Markov Decision Process (MDP)

We consider the setting of linear MDP (Yang and Wang, 2019; Jin
et al., 2020) where both the transition probabilities and reward
functions can be linearly parametrized as

Ph(s ′|s, a) = 〈φ(s, a),µh(s ′)〉, rh(s, a) = 〈φ(s, a),θh〉.

• Any tabular MDP is a linear MDP with one-hot features

• The action-value function Qπ
h (s, a) is also linear in the feature

mapping φ (Jin et al., 2020), i.e., ∃wπ
h s.t.

Qπ
h (s, a) = 〈φ(s, a),wπ

h 〉

• We adapt the original LSVI-UCB algorithm (Jin et al., 2020) to
allow for adaptivity constraints



Batch learning model: LSVI-UCB-Batch

Algorithm 1 LSVI-UCB-Batch

1: Set b ← 1, ti ← (i − 1)bKB c+ 1, i ∈ [B] (uniform batch grids)
2: for episode k = 1, 2, . . . ,K do
3: if k = tb (time to switch the policy) then
4: b ← b + 1, Qk

H+1(·, ·)← 0

5: Compute optimistic estimates {Qk
h } by backward regression

6: Update the greedy policy πk induced by {Qk
h }h∈[H]

7: else
8: πk ← πk−1 (keep the current policy)
9: end if

10: Run policy πk to obtain the trajectory {(skh , akh , rh(skh , a
k
h))}

11: end for

• A batched version of the original LSVI-UCB (Jin et al., 2020)



Regret of LSVI-UCB-Batch

Theorem (W., Zhou, Gu)

Under technical assumptions and with appropriate choice of
parameters, the total regret of LSVI-UCB-Batch is bounded by

Regret(T ) ≤ Õ
(
dHT/B +

√
d3H3T

)
.

• B = Ω(
√

T
dH ) batches suffice to achieve a Õ(

√
d3H3T ) regret,

which is the same as that of the original LSVI-UCB

• Our algorithm requires much fewer policy switches (
√

T
dH vs T )

• We also provide a Ω(dH
√
T + dHT/B) lower bound (for

uniform grids), suggesting the above dependency on B is tight

• Can we do better?

• Yes, by using adaptive batch size



Regret of LSVI-UCB-Batch

Theorem (W., Zhou, Gu)

Under technical assumptions and with appropriate choice of
parameters, the total regret of LSVI-UCB-Batch is bounded by

Regret(T ) ≤ Õ
(
dHT/B +

√
d3H3T

)
.

• B = Ω(
√

T
dH ) batches suffice to achieve a Õ(

√
d3H3T ) regret,

which is the same as that of the original LSVI-UCB

• Our algorithm requires much fewer policy switches (
√

T
dH vs T )

• We also provide a Ω(dH
√
T + dHT/B) lower bound (for

uniform grids), suggesting the above dependency on B is tight

• Can we do better?

• Yes, by using adaptive batch size



Regret of LSVI-UCB-Batch

Theorem (W., Zhou, Gu)

Under technical assumptions and with appropriate choice of
parameters, the total regret of LSVI-UCB-Batch is bounded by

Regret(T ) ≤ Õ
(
dHT/B +

√
d3H3T

)
.

• B = Ω(
√

T
dH ) batches suffice to achieve a Õ(

√
d3H3T ) regret,

which is the same as that of the original LSVI-UCB

• Our algorithm requires much fewer policy switches (
√

T
dH vs T )

• We also provide a Ω(dH
√
T + dHT/B) lower bound (for

uniform grids), suggesting the above dependency on B is tight

• Can we do better?

• Yes, by using adaptive batch size



Regret of LSVI-UCB-Batch

Theorem (W., Zhou, Gu)

Under technical assumptions and with appropriate choice of
parameters, the total regret of LSVI-UCB-Batch is bounded by

Regret(T ) ≤ Õ
(
dHT/B +

√
d3H3T

)
.

• B = Ω(
√

T
dH ) batches suffice to achieve a Õ(

√
d3H3T ) regret,

which is the same as that of the original LSVI-UCB

• Our algorithm requires much fewer policy switches (
√

T
dH vs T )

• We also provide a Ω(dH
√
T + dHT/B) lower bound (for

uniform grids), suggesting the above dependency on B is tight

• Can we do better?

• Yes, by using adaptive batch size



Regret of LSVI-UCB-Batch

Theorem (W., Zhou, Gu)

Under technical assumptions and with appropriate choice of
parameters, the total regret of LSVI-UCB-Batch is bounded by

Regret(T ) ≤ Õ
(
dHT/B +

√
d3H3T

)
.

• B = Ω(
√

T
dH ) batches suffice to achieve a Õ(

√
d3H3T ) regret,

which is the same as that of the original LSVI-UCB

• Our algorithm requires much fewer policy switches (
√

T
dH vs T )

• We also provide a Ω(dH
√
T + dHT/B) lower bound (for

uniform grids), suggesting the above dependency on B is tight

• Can we do better?

• Yes, by using adaptive batch size



Rare policy switch model: LSVI-UCB-RareSwitch

Algorithm 2 LSVI-UCB-RareSwitch

1: Initialize Λh = Λ0
h = λId for all h ∈ [H]

2: for episode k = 1, 2, . . . ,K do
3: Λk

h ←
∑k−1

τ=1 φ(sτh , a
τ
h)φ(sτh , a

τ
h)> + λId (covariance matrix)

4: if ∃h, det(Λk
h) > η det(Λh) (trigger policy switch) then

5: {Λh} ← {Λk
h} (maintain the last covariance matrix)

6: Compute optimistic estimates {Qk
h } by backward regres-

sion, update the corresponding greedy policy πk

7: else
8: πk ← πk−1 (keep the current policy)
9: end if

10: Run policy πk to obtain the trajectory {(skh , akh , rh(skh , a
k
h))}

11: end for

• Related to the doubling trick (Jaksch et al., 2010;
Abbasi-Yadkori et al., 2011; Zhou et al., 2021)
• The policy switch slows down as k grows



Rare policy switch model: LSVI-UCB-RareSwitch

Algorithm 3 LSVI-UCB-RareSwitch

1: Initialize Λh = Λ0
h = λId for all h ∈ [H]

2: for episode k = 1, 2, . . . ,K do
3: Λk

h ←
∑k−1

τ=1 φ(sτh , a
τ
h)φ(sτh , a

τ
h)> + λId (covariance matrix)

4: if ∃h, det(Λk
h) > η det(Λh) (trigger policy switch) then

5: {Λh} ← {Λk
h} (maintain the last covariance matrix)

6: Compute optimistic estimates {Qk
h } by backward regres-

sion, update the corresponding greedy policy πk

7: else
8: πk ← πk−1 (keep the current policy)
9: end if

10: Run policy πk to obtain the trajectory {(skh , akh , rh(skh , a
k
h))}

11: end for

• Related to the doubling trick (Jaksch et al., 2010;
Abbasi-Yadkori et al., 2011; Zhou et al., 2021)
• The policy switch slows down as k grows



Regret of LSVI-UCB-RareSwitch

Theorem (W., Zhou, Gu)

Under technical assumptions and with appropriate choice of
parameters, the total regret of LSVI-UCB-RareSwitch satisfies

Regret(T ) ≤ Õ

(√
d3H3T [1 + T/(dH)]dH/B

)
.

• B = Ω(dH logT ) suffices to achieve a Õ(
√
d3H3T ) regret

• This requires even fewer batches compared with
LSVI-UCB-Batch, namely Ω(dH logT )

• Trade-off between the total regret bound and the number of
policy switches

• When choosing η to be a constant (or equivalently,
B = Ω(logT )), LSVI-UCB-RareSwitch reduces to the
algorithm studied in Gao et al. (2021)



Regret of LSVI-UCB-RareSwitch

Theorem (W., Zhou, Gu)

Under technical assumptions and with appropriate choice of
parameters, the total regret of LSVI-UCB-RareSwitch satisfies

Regret(T ) ≤ Õ

(√
d3H3T [1 + T/(dH)]dH/B

)
.

• B = Ω(dH logT ) suffices to achieve a Õ(
√
d3H3T ) regret

• This requires even fewer batches compared with
LSVI-UCB-Batch, namely Ω(dH logT )

• Trade-off between the total regret bound and the number of
policy switches

• When choosing η to be a constant (or equivalently,
B = Ω(logT )), LSVI-UCB-RareSwitch reduces to the
algorithm studied in Gao et al. (2021)



Regret of LSVI-UCB-RareSwitch

Theorem (W., Zhou, Gu)

Under technical assumptions and with appropriate choice of
parameters, the total regret of LSVI-UCB-RareSwitch satisfies

Regret(T ) ≤ Õ

(√
d3H3T [1 + T/(dH)]dH/B

)
.

• B = Ω(dH logT ) suffices to achieve a Õ(
√
d3H3T ) regret

• This requires even fewer batches compared with
LSVI-UCB-Batch, namely Ω(dH logT )

• Trade-off between the total regret bound and the number of
policy switches

• When choosing η to be a constant (or equivalently,
B = Ω(logT )), LSVI-UCB-RareSwitch reduces to the
algorithm studied in Gao et al. (2021)



Regret of LSVI-UCB-RareSwitch

Theorem (W., Zhou, Gu)

Under technical assumptions and with appropriate choice of
parameters, the total regret of LSVI-UCB-RareSwitch satisfies

Regret(T ) ≤ Õ

(√
d3H3T [1 + T/(dH)]dH/B

)
.

• B = Ω(dH logT ) suffices to achieve a Õ(
√
d3H3T ) regret

• This requires even fewer batches compared with
LSVI-UCB-Batch, namely Ω(dH logT )

• Trade-off between the total regret bound and the number of
policy switches

• When choosing η to be a constant (or equivalently,
B = Ω(logT )), LSVI-UCB-RareSwitch reduces to the
algorithm studied in Gao et al. (2021)



Numerical experiments

We examine the performance of our algorithms on a hard-to-learn
linear MDP instance (Zhou et al., 2021) with K = 2500

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Re
gr

et

fully adaptive
B = 50
B = 15

LSVI-UCB-Batch

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Re
gr

et

fully adaptive
= 4
= 8

LSVI-UCB-RareSwitch

Plot of average regret, Regret(T )/K , v.s. the number of episodes.
The results are averaged over 50 rounds of each algorithm, and the

error bars are the [20%, 80%] empirical confidence intervals.



Numerical experiments

We examine the performance of our algorithms on a hard-to-learn
linear MDP instance (Zhou et al., 2021) with K = 2500

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Re
gr

et

fully adaptive
B = 50
B = 15

LSVI-UCB-Batch

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Re
gr

et

fully adaptive
= 4
= 8

LSVI-UCB-RareSwitch

Plot of average regret, Regret(T )/K , v.s. the number of episodes.
The results are averaged over 50 rounds of each algorithm, and the

error bars are the [20%, 80%] empirical confidence intervals.



Conclusion

• We study episodic linear MDP under adaptivity constraints

• For the batch learning model, we propose LSVI-UCB-Batch

which achieves a Õ(
√
d3H3T + dHT/B) regret (the dependency

on B is tight due to a complimentary lower bound)

• For the rare policy switch model, we propose
LSVI-UCB-RareSwitch which achieves a
Õ(
√

d3H3T [1 + T/(dH)]dH/B) regret

• Compared with the fully adaptive LSVI-UCB algorithm (Jin
et al., 2020), our algorithms can achieve the same order of regret
with much fewer number of policy switches

• Synthetic numerical experiments corroborate our theory

Thank you!



Conclusion

• We study episodic linear MDP under adaptivity constraints

• For the batch learning model, we propose LSVI-UCB-Batch

which achieves a Õ(
√
d3H3T + dHT/B) regret (the dependency

on B is tight due to a complimentary lower bound)

• For the rare policy switch model, we propose
LSVI-UCB-RareSwitch which achieves a
Õ(
√

d3H3T [1 + T/(dH)]dH/B) regret

• Compared with the fully adaptive LSVI-UCB algorithm (Jin
et al., 2020), our algorithms can achieve the same order of regret
with much fewer number of policy switches

• Synthetic numerical experiments corroborate our theory

Thank you!



Abbasi-Yadkori, Y., Pál, D. and Szepesvári, C. (2011).
Improved algorithms for linear stochastic bandits. In Advances in
Neural Information Processing Systems, vol. 24.

Arora, R., Dekel, O. and Tewari, A. (2012). Online bandit
learning against an adaptive adversary: from regret to policy
regret. arXiv preprint arXiv:1206.6400 .

Bai, Y., Xie, T., Jiang, N. and Wang, Y.-X. (2019).
Provably efficient q-learning with low switching cost. In
Advances in Neural Information Processing Systems, vol. 32.
URL https://proceedings.neurips.cc/paper/2019/file/

473803f0f2ebd77d83ee60daaa61f381-Paper.pdf

Gao, M., Xie, T., Du, S. S. and Yang, L. F. (2021). A
provably efficient algorithm for linear markov decision process
with low switching cost. arXiv preprint arXiv:2101.00494 .

Jaksch, T., Ortner, R. and Auer, P. (2010). Near-optimal
regret bounds for reinforcement learning. Journal of Machine
Learning Research 11 1563–1600.

Jin, C., Yang, Z., Wang, Z. and Jordan, M. I. (2020).

https://proceedings.neurips.cc/paper/2019/file/473803f0f2ebd77d83ee60daaa61f381-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/473803f0f2ebd77d83ee60daaa61f381-Paper.pdf


Provably efficient reinforcement learning with linear function
approximation. In Conference on Learning Theory. PMLR.

Kalai, A. and Vempala, S. (2005). Efficient algorithms for
online decision problems. Journal of Computer and System
Sciences 71 291–307.

Yang, L. and Wang, M. (2019). Sample-optimal parametric
q-learning using linearly additive features. In International
Conference on Machine Learning.

Zhou, D., He, J. and Gu, Q. (2021). Provably efficient
reinforcement learning for discounted mdps with feature
mapping. In International Conference on Machine Learning.
PMLR.


	Motivation: adaptivity constraints in Reinforcement Learning
	Problem setting
	Main results: algorithm and analysis
	Numerical experiment
	Conclusion
	References

