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Problem Setting

I Online Stochastic Shortest Path (SSP):
M(S,A,P, c, sinit, g).
I State space S, action space A
I Initial state sinit, goal state g
I Cost function c : S ×A → [0, 1]

I the goal state incurs zero cost, i.e., c(g , ·) ≡ 0

I Transition probability function P(s ′|s, a)
I the goal state is an absorbing state, i.e., P(g |g , ·) ≡ 1

I SSP is a generalization of episodic finite-horizon MDPs and
discounted infinite-horizon MDPs: the horizon length varies
across episodes, and can be random

I Policy: A policy π is a map from S to A
I Goal: Minimize the cumulative cost over all episodes

I Value function: Expected accumulative cost for policy
π: V π(s) = limT→∞E[

∑T
t=1 c(st, π(st)|s1 = s]

I Regret: The sum of sub-optimality over K episodes:

RK :=
K∑
k=1

Ik∑
i=1

ck,i − K · V π∗(sinit)

Ik: length of the k-th episode, π∗: the optimal policy

I Linear mixture SSP: There exists an unknown vector
θ∗ ∈ Rd such that P(s ′|s, a) = 〈φ(s ′|s, a),θ∗〉, where φ
is some known d -dimensional feature mapping

Our Contributions
I We develop LEVIS, a novel optimistic value-iteration

algorithm for linear mixture SSP
I Model estimate updating criteria: coupling features with time

I determinant-doubling + time-step-doubling

I Optimistic planning: contraction via perturbation
I Introduce an auxiliary discount factor by perturbing the transition kernel

I A regret upper bound for LEVIS with Hoeffding-type
bonus (a simple algorithm)

I A near-optimal regret upper bound for LEVIS with
Bernstein-type bonus (a more complicate algorithm)

Main Results: Algorithm

I Notation:
I βt: confidence radius, q: transition bonus, ρ : cost perturbation
I φV (s, a) =

∫
S φ(s ′|s, a)V (s ′)ds ′, cρ(s, a) = max{c(s, a), ρ}

I Main algorithm:

Algorithm 1 LEVIS

1: for episode k = 1, 2, . . . ,K do
2: while st 6= g do
3: Take action at greedy w.r.t. the Q function
4: Receive c(st, at) and st+1

5: Σt ← Σt−1 + φV (st, at)φV (st, at)
>

6: bt ← bt−1 + φV (st, at)V (st+1)
7: if det(Σt) or t doubles then
8: Update model estimate θ̂ = Σ−1

t bt
9: Update the confidence region of θ̂

C = {θ : ‖θ − θ̂‖Σt
≤ βt}

10: Q(·, ·)← DEVI(C, 1/t, 1/t, ρ)
11: V (·)← maxa∈AQ(s, ·)
12: end if
13: t ← t + 1
14: end while
15: end for

I Subroutine:

Algorithm 2 DEVI

1: Input: Confidence set C, error parameter ε, transi-
tion bonus q, cost perturbation ρ

2: Initialize: i ← 0,Q (0) ← 0,V (0) ← 0
3: while ‖V (i) − V (i−1)‖∞≥ ε do
4: Q (i+1)(·, ·)← cρ(·, ·) + (1− q) minθ〈θ,φV (i)(·, ·)〉
5: V (i+1)(·)← maxa∈AQ

(i+1)(·, a)
6: i ← i + 1
7: end while
8: Output: Q (i+1)(·, ·)

Main Results: Theory

Theorem 1 (Hoeffding-type upper bound)
Under technical assumptions, the proposed algorithm
LEVIS achieves a Õ(dB1.5

?

√
K/cmin) regret, where d is

the feature dimension, B? is the expected cost of the
optimal policy, cmin > 0 is the lower bound of the
per-step cost. The bound degrades to Õ(K 2/3) for
general cost functions, i.e., cmin = 0.

Theorem 2 (Lower bound)
Under technical assumptions, any algorithm for linear
mixture SSP incurs an expected regret of at least
Ω(dB?

√
K ).

Theorem 3 (Near-optimal upper bound)
Under technical assumptions, by using a refined
Bernstein-type confidence region in algorithm LEVIS, it
can achieve Õ(dB?

√
K/cmin) regret.

Open problems:

I How to remove the dependence on cmin?

I How to achieve Õ(
√
K ) regret bound when cmin = 0?

Experiments

Numerical experiments corroborate our theory that LEVIS
achieves Õ(

√
K ) regret:
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(a) Plot of average regret
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(b) Log-log plot of regret
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