Yale UCLA

,

Learning Stochastic Shortest Path with Linear Function Approximation Yifei Min 1 , Jiafan He 2 , Tianhao Wang 1 , Quanquan Gu 2 .

²Dept. of Computer Science, UCLA

gorithm

 \flat onus, ρ : cost perturbation $(s, a) = \max\{c(s, a), \rho\}$

 $1.1:$ the Q function

 $(a, a_t) \phi_V(s_t, a_t)^\top$ (S_{t+1}) **b** $= \sum_t^{-1} b_t$ $\boldsymbol{\hat{\theta}}$ $\boldsymbol{\hat{\theta}}$ $\left\Vert \Sigma_{t}\leq\beta_{t}\right\}$, $1/t, \rho)$

r parameter ϵ , transi- $(0) \leftarrow 0$ $g)$ min $_{\boldsymbol{\theta}}\langle\boldsymbol{\theta},\boldsymbol{\phi}_{V^{(i)}}(\cdot,\cdot)\rangle$ (\cdot, a)

,

Problem Setting

- **In Online Stochastic Shortest Path (SSP):**
	- $M(\mathcal{S},\mathcal{A},\mathbb{P},\mathsf{c},\mathsf{s}_\mathsf{init},\mathsf{g}).$
	- State space S , action space A
	- Initial state s_{init} , goal state g \triangleright Cost function $c : S \times A \rightarrow [0,1]$
	- In the goal state incurs zero cost, i.e., $c(g, \cdot) \equiv 0$
	- **I** Transition probability function $\mathbb{P}(s'|s, a)$ **I** the goal state is an absorbing state, i.e., $\mathbb{P}(g|g, \cdot) \equiv 1$
	- I SSP is a generalization of episodic finite-horizon MD discounted infinite-horizon MDPs: the horizon length across episodes, and can be random
- **Policy:** A policy π is a map from S to A
- **In Goal:** Minimize the cumulative cost over all episodes
- I Value function: Expected accumulative cost $\pi\colon\mathcal{V}^{\pi}(\mathsf{s})=\lim_{\mathcal{T}\rightarrow\infty}\mathbb{E}[\sum_{t=1}^{T}]$ $\frac{1}{t-1} \, c\bigl(\mathsf{s}_t, \pi(\mathsf{s}_t) | \mathsf{s}_1 = \mathsf{s}\bigr]$
- **I Regret:** The sum of sub-optimality over K ep

 I_k : length of the k-th episode, π^* : the optimal policy I Linear mixture SSP: There exists an unknow $\boldsymbol{\theta}^* \in \mathbb{R}^d$ such that $\mathbb{P}(s'|s,a) = \langle \boldsymbol{\phi}(s'|s,a), \boldsymbol{\theta}^* \rangle$ is some known d-dimensional feature mapping

$$
R_K := \sum_{k=1}^K \sum_{i=1}^{l_k} c_{k,i} - K \cdot V^{\pi^*}(s_{init})
$$

Our Contributions

- \blacktriangleright We develop LEVIS, a novel optimistic value-ite algorithm for linear mixture SSP
	- \blacktriangleright Model estimate updating criteria: coupling features \blacktriangleright determinant-doubling $+$ time-step-doubling
	- **I Optimistic planning: contraction via perturbation** Introduce an auxiliary discount factor by perturbing the trans
- A regret upper bound for LEVIS with Hoeffdingbonus (a simple algorithm)
- A near-optimal regret upper bound for LEVIS Bernstein-type bonus (a more complicate algor

¹Dept. of Statistics and Data Science, Yale University

Theorem 1 (Hoeffding-type upper bound) Under technical assumptions, the proposed algorithm

LEVIS achieves a O l
. $(dB^{1.5}_{\star})$ \star $\sqrt{K/c_{\text{min}}}$) regret, where d is the feature dimension, B_{\star} is the expected cost of the optimal policy, $c_{\min} > 0$ is the lower bound of the per-step cost. The bound degrades to O e $(K^{2/3})$ for general cost functions, i.e., $c_{\text{min}} = 0$.

Under technical assumptions, any algorithm for linear mixture SSP incurs an expected regret of at least $\Omega(dB_{\star}\sqrt{K}).$ $\dot{\mathsf{e}}$

Under technical assumptions, by using a refined Bernstein-type confidence region in algorithm LEVIS, it can achieve O e $(dB_{\star}\sqrt{K/c_{\text{min}}})$ regret.

 \blacktriangleright How to remove the dependence on c_{min} ? \blacktriangleright How to achieve $\widetilde{\mathcal{O}}$ e $({\sqrt{K}})$ regret bound when $c_{\text{min}}=0$? √

Main Results: Theory

Theorem 2 (Lower bound)

Theorem 3 (Near-optimal upper bound)

Open problems:

Experiments

Numerical experiments corroborate our theory that LEVIS

achieves O e (\sqrt{K}) regret: √

(a) Plot of average regret

ICMI

(b) Log-log plot of regret

ICML 2022