Yale UCLA

Learning Stochastic Shortest Path with Linear **Function Approximation** Yifei Min¹, Jiafan He², Tianhao Wang¹, Quanquan Gu².

Problem Setting

- Online Stochastic Shortest Path (SSP):
 - $M(\mathcal{S}, \mathcal{A}, \mathbb{P}, c, s_{\text{init}}, g).$
 - State space S, action space A
 - ► Initial state s_{init}, goal state g
 - ► Cost function $c : S \times A \rightarrow [0, 1]$ ▶ the goal state incurs zero cost, i.e., $c(g, \cdot) \equiv 0$
 - For Transition probability function $\mathbb{P}(s'|s, a)$
 - ▶ the goal state is an absorbing state, i.e., $\mathbb{P}(g|g, \cdot) \equiv 1$
 - SSP is a generalization of episodic finite-horizon MD discounted infinite-horizon MDPs: the horizon length across episodes, and can be random
- **Policy:** A policy π is a map from S to A
- ► Goal: Minimize the cumulative cost over all e
- ► Value function: Expected accumulative cost $\pi: V^{\pi}(s) = \lim_{T \to \infty} \mathbb{E}[\sum_{t=1}^{T} c(s_t, \pi(s_t) | s_1 = s]]$
- **Regret:** The sum of sub-optimality over K ep

$$R_{K} := \sum_{k=1}^{K} \sum_{i=1}^{I_{k}} c_{k,i} - K \cdot V^{\pi^{*}}(s_{\mathsf{init}})$$

 I_k : length of the k-th episode, π^* : the optimal Linear mixture SSP: There exists an unknow $oldsymbol{ heta}^* \in \mathbb{R}^d$ such that $\mathbb{P}(s'|s,a) = \langle \phi(s'|s,a), oldsymbol{ heta}^*
angle$ is some known *d*-dimensional feature mapping

Our Contributions

- ► We develop LEVIS, a novel optimistic value-ite algorithm for linear mixture SSP
 - Model estimate updating criteria: coupling features determinant-doubling + time-step-doubling
 - Optimistic planning: contraction via perturbation Introduce an auxiliary discount factor by perturbing the trans
- A regret upper bound for LEVIS with Hoeffdin bonus (a simple algorithm)
- ► A near-optimal regret upper bound for LEVIS Bernstein-type bonus (a more complicate algor

¹Dept. of Statistics and Data Science, Yale University

	Main Results: Alg
	 Notation: β_t: confidence radius, q: transition b $\phi_V(s, a) = \int_S \phi(s' s, a) V(s') ds', c_\rho(a)$
	Algorithm 1 LEVIS 1: for episode $k = 1, 2,, K$ do
Ps and	2: while $s_t \neq g$ do
h varies	3: Take action a_t greedy w.r.
	4: Receive $c(s_t, a_t)$ and s_{t+1}
	5: $\Sigma_t \leftarrow \Sigma_{t-1} + \phi_V(s_t, a_t)\phi$
episodes	6: $\mathbf{b}_t \leftarrow \mathbf{b}_{t-1} + \phi_V(s_t, a_t) V($
for policy	7: If $det(\Sigma_t)$ or t doubles tr
5]	8: Update model estimate
pisodes:	9: Update the confidence
	$\mathcal{C} = \{oldsymbol{ heta} : \ oldsymbol{ heta} -$
	10: $Q(\cdot, \cdot) \leftarrow DEVI(\mathcal{C}, 1/t, \cdot)$
	11: $V(\cdot) \leftarrow \max_{a \in \mathcal{A}} Q(s, \cdot)$
I policy	12: end if
wn vector	13: $t \leftarrow t+1$
$ angle,$ where ϕ	14: end while
	15: end for
	Subroutine:
	Algorithm 2 DEVI
eration	1: Input: Confidence set C , error
	tion bonus q , cost perturbation
with time	2: Initialize: $i \leftarrow 0, Q^{(0)} \leftarrow 0, V^{(0)}$
	3: while $\ V^{(i)} - V^{(i-1)}\ _{\infty} \ge \epsilon$ do
nsition kernel	4: $Q^{(i+1)}(\cdot, \cdot) \leftarrow c_{\rho}(\cdot, \cdot) + (1 - 1)$
ng-type	5: $V^{(i+1)}(\cdot) \leftarrow \max_{a \in \mathcal{A}} Q^{(i+1)}(\cdot)$
	6: $i \leftarrow i + 1$
with	7: end while
rithm)	8: Output: $Q^{(\prime+1)}(\cdot, \cdot)$

ICML 2022

²Dept. of Computer Science, UCLA

gorithm

ponus, ρ : cost perturbation $(s,a) = \max\{c(s,a),\rho\}$

.t. the Q function

 $\phi_V(s_t, a_t)$ (s_{t+1}) nen $\widehat{oldsymbol{ heta}} = \Sigma_t^{-1} \mathsf{b}_t$ region of $\hat{\theta}$ $\|\hat{\boldsymbol{\theta}}\|_{\boldsymbol{\Sigma}_t} \leq \beta_t \}$ 1/t,
ho)

r parameter ϵ , transi- $(0) \rightarrow (0)$ **q**) min_{heta} $\langle \boldsymbol{\theta}, \boldsymbol{\phi}_{V^{(i)}}(\cdot, \cdot) \rangle$

<u>Theorem 1</u> (Hoeffding-type upper bound)

Under technical assumptions, the proposed algorithm LEVIS achieves a $\mathcal{O}(dB^{1.5}_{\star}\sqrt{K/c_{\min}})$ regret, where d is the feature dimension, B_{\star} is the expected cost of the optimal policy, $c_{min} > 0$ is the lower bound of the per-step cost. The bound degrades to $O(K^{2/3})$ for general cost functions, i.e., $c_{\min} = 0$.

Theorem 2 (Lower bound)

Under technical assumptions, any algorithm for linear mixture SSP incurs an expected regret of at least $\Omega(dB_{\star}\sqrt{K}).$

Theorem 3 (Near-optimal upper bound)

Under technical assumptions, by using a refined Bernstein-type confidence region in algorithm LEVIS, it can achieve $\mathcal{O}(dB_{\star}\sqrt{K/c_{\min}})$ regret.

Open problems:

 \blacktriangleright How to remove the dependence on c_{\min} ? ► How to achieve $\mathcal{O}(\sqrt{K})$ regret bound when $c_{\min} = 0$?

achieves $\mathcal{O}(\sqrt{K})$ regret:

(a) Plot of average regret

Main Results: Theory

Experiments

Numerical experiments corroborate our theory that LEVIS

(b) Log-log plot of regret