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Reinforcement Learning

Reinforcement Learning (RL) research typically falls into either of
the following two categories:

• Online RL, where the agent actively interacts with the
environment to maximize some long-term cumulative rewards
• E.g., episodic finite-horizon MDPs, discounted infinite-horizon

MDPs, etc

• Offline RL (a.k.a, batch RL), where the goal is to extract useful
information from the past data
• E.g., offline policy optimization, offline policy evaluation

(a.k.a., off-policy evaluation), etc

In this work, we study off-policy evaluation in the context of RL
with function approximation, beyond the scope of traditional
tabular MDPs.
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(Offline) Reinforcement Learning

In offline Reinforcement Learning (RL), one of the most important
tasks is to evaluate the value of an unobserved policy:

By Gottesman et al. − Guidelines for reinforcement learning in healthcare.
https://www.nature.com/articles/s41591-018-0310-5

https://www.nature.com/articles/s41591-018-0310-5


Off-policy evalution

In offline RL, off-policy evaluation (OPE) refers to a classic task
which seeks to evaluate the performance of a target policy π
given offline data generated by a behavior policy π̄.

• Most existing works on OPE are for tabular MDPs (Precup,
2000; Jiang and Li, 2016; Yin et al., 2021)

• For linear MDPs (Yang and Wang, 2019; Jin et al., 2020), Duan
et al. (2020) proposed a regression-based fitted Q-iteration
method, FQI-OPE, which achieves a Õ(H2

√
(1 + d(π, π̄))/N)

error bound where d(π, π̄) is the distribution shift between π
and π̄

• Yet, the above error bound is not tight, because the variance
information hidden in the data is not utilized



OPE for linear MDP

We consider the setting of linear MDP (Yang and Wang, 2019; Jin
et al., 2020) where both the transition probabilities and reward
functions can be linearly parametrized as

Ph(s ′|s, a) = 〈φ(s, a),µh(s ′)〉, rh(s, a) = 〈φ(s, a),θh〉.

• The action-value function Qπ
h (s, a) is also linear in the feature

mapping φ (Jin et al., 2020), i.e., ∃wπ
h ,Q

π
h (s, a) = 〈φ(s, a),wπ

h 〉
We assume that the offline data consists of K trajectories:

• Denote the dataset as D where D = {Dh}h∈[H]. We assume Dh1

is independent of Dh2 for h1 6= h2. For each stage h, we have
Dh = {(sk,h, ak,h, rk,h, s ′k,h)}k∈[K ].



Notation and Technical Assumptions
• We define the following uncentered covariance matrix under

behavior policy for all h ∈ [H]:

Σh = Eπ̄,h
[
φ(s, a)φ(s, a)>

]
. (3.1)

Assumption (Coverage)

For all h ∈ [H], κh = λmin(Σh) > 0.

• We define the weighted version of the covariance matrices:

Λh = Eπ̄,h
[
σh(s, a)−2φ(s, a)φ(s, a)>

]
, (3.2)

where

σh(s, a) ≈
√
VhV

π
h+1(s, a),

[VhV
π
h+1](s, a) = [Ph(V π

h+1)2](s, a)−
(
[PhV

π
h+1](s, a)

)2
,

[Phf ](s, a) =

∫
S
f (s ′)dPh(s ′|s, a) = φ(s, a)>

∫
S
f (s ′) dµh(s ′).



Recap of results in Duan et al. (2020)

The dominant term in the error bound in Duan et al. (2020) is
Õ(
∑H

h=1(H − h + 1)‖vπh‖Σ−1
h
/
√
K ) where H − h + 1 is the trivial

upper bound of
√

VhVh+1

• We can do better by estimating VhVh+1 more precisely

To demonstrate the intuition, suppose we have iid samples
{(sk,h, ak,h, s ′k,h)}k∈[K ], and the regression error is:

ek = φ(sk,h, ak,h)
[PhV

π
h+1](sk,h, ak,h)− V π

h+1(s ′k,h)

[VhV
π
h+1](sk,h, ak,h)2

By CLT, 1√
K

∑K
k=1 ek

d−→ N (0,Cov(ek)), so Cov(ek) is the

’correct measure’ of error

• This implies that we should use weighted regression

• But, how to estimate the variance?



Estimate Variance via regression

Variance of the value function:

[VhV
π
h+1](s, a) = [Ph(V π

h+1)2](s, a)−
(
[PhV

π
h+1](s, a)

)2

= φ(s, a)>
∫
S
V π
h+1(s ′)2 dµh(s ′)︸ ︷︷ ︸

linear in φ(s,a)

−([PhV
π
h+1](s, a)︸ ︷︷ ︸

linear in φ(s,a)

)2

Again, regression!



Algorithm: VA-OPE

Algorithm 1 Variance-Aware Off-Policy Evaluation (VA-OPE)

1: for h = H,H − 1, . . . , 1 do
2: Σ̂h ←

∑K
k=1 φ̌k,hφ̌

>
k,h + λId

3: β̂h ← Σ̂−1
h

∑K
k=1 φ̌k,hV̂

π
h+1(š ′k,h)2 (estimate second moment)

4: θ̂h ← Σ̂−1
h

∑K
k=1 φ̌k,hV̂

π
h+1(š ′k,h) (estimate first moment)

5: σ̂h(·, ·)←
√

max{1, V̂hV̂
π
h+1(·, ·)}+ 1 (estimate variance)

6: Λ̂h ←
∑K

k=1 φk,hφ
>
k,h/σ̂

2
k,h + λId (backward

7: Yk,h ← rk,h + 〈φπh (s ′k,h), ŵπ
h+1〉 weighted

8: ŵπ
h ← Λ̂−1

h

∑K
k=1 φk,hYk,h/σ̂

2
k,h regression)

9: Q̂π
h (·, ·)← 〈φ(·, ·), ŵπ

h 〉, V̂ π
h (·)← 〈φπh (·), ŵπ

h 〉
10: end for
11: Output: v̂π1 ←

∫
S V̂

π
1 (s) dξ1(s)



Error bound for VA-OPE

Theorem (M., Wang, Zhou, Gu)

There exists some C such that with probability at least 1− δ, the
output of VA-OPE satisfies

|vπ1 − v̂π1 | ≤ C ·

[
H∑

h=1

‖vπh‖Λ−1
h

]
·
√

log(16H/δ)

K

where vπh = Eπ,h[φ(sh, ah)].

• ∑H
h=1 ‖vπh‖Λ−1

h
characterizes the distribution shift between the

target policy and behavior policy and is instance-dependent
and variance-aware

• This recovers the result in Duan et al. (2020) in the worst case,
and improves it by an order of Ω(H) in some cases



Numerical experiments

We test the performance of our algorithms on a hard-to-learn
linear MDP instance (Zhou et al., 2021).
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Comparison of VA-OPE and FQI-OPE under different settings of
horizon length H. VA-OPE’s advantage becomes more significant as
H increases, matching the theoretical prediction. The results are

averaged over 50 trials and the error bars denote an empirical
[10%,90%] confidence interval.
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Conclusion

• For off-policy evaluation in RL with linear function
approximation, we propose a weighted regression-based
algorithm, VA-OPE

• Theoretical analysis demonstrates the superiority of our proposed
method

• We also evaluate the performance of VA-OPE empirically via
synthetic experiments, which corroborate our theory



Thank you!
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