Variance-Aware Off-Policy Evaluation with Linear Function Approximation

Yifei Min¹ Tianhao Wang¹ Dongruo Zhou² Quanquan Gu²

¹Department of Statistics and Data Science, Yale ²Department of Computer Science, UCLA

NeurIPS 2021

Outline

Off-policy evaluation in RL

Problem setting

Main results

Numerical experiments

Conclusion

Reinforcement Learning

Reinforcement Learning (RL) research typically falls into either of the following two categories:

Reinforcement Learning

Reinforcement Learning (RL) research typically falls into either of the following two categories:

- Online RL, where the agent actively interacts with the environment to maximize some long-term cumulative rewards
 - E.g., episodic finite-horizon MDPs, discounted infinite-horizon MDPs, etc
- Offline RL (a.k.a, batch RL), where the goal is to extract useful information from the past data
 - E.g., offline policy optimization, **offline policy evaluation** (a.k.a., off-policy evaluation), etc

Reinforcement Learning

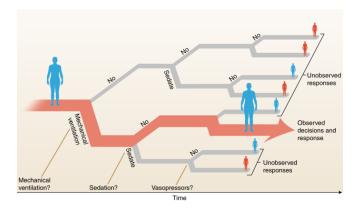
Reinforcement Learning (RL) research typically falls into either of the following two categories:

- Online RL, where the agent actively interacts with the environment to maximize some long-term cumulative rewards
 - E.g., episodic finite-horizon MDPs, discounted infinite-horizon MDPs, etc
- Offline RL (a.k.a, batch RL), where the goal is to extract useful information from the past data
 - E.g., offline policy optimization, **offline policy evaluation** (a.k.a., off-policy evaluation), etc

In this work, we study *off-policy evaluation* in the context of RL with *function approximation*, beyond the scope of traditional tabular MDPs.

(Offline) Reinforcement Learning

In offline Reinforcement Learning (RL), one of the most important tasks is to evaluate the value of an unobserved policy:



By Gottesman et al. - Guidelines for reinforcement learning in healthcare. https://www.nature.com/articles/s41591-018-0310-5

Off-policy evalution

In offline RL, off-policy evaluation (OPE) refers to a classic task which seeks to evaluate the performance of a **target policy** π given offline data generated by a **behavior policy** $\bar{\pi}$.

- Most existing works on OPE are for tabular MDPs (Precup, 2000; Jiang and Li, 2016; Yin et al., 2021)
- For linear MDPs (Yang and Wang, 2019; Jin et al., 2020), Duan et al. (2020) proposed a regression-based fitted Q-iteration method, FQI-OPE, which achieves a $\tilde{\mathcal{O}}(H^2\sqrt{(1+d(\pi,\bar{\pi}))/N})$ error bound where $d(\pi,\bar{\pi})$ is the distribution shift between π and $\bar{\pi}$
- Yet, the above error bound is *not* tight, because the **variance information** hidden in the data is not utilized

OPE for linear MDP

We consider the setting of linear MDP (Yang and Wang, 2019; Jin et al., 2020) where both the transition probabilities and reward functions can be linearly parametrized as

$$\mathbb{P}_h(s'|s,a) = \langle \phi(s,a), \mu_h(s') \rangle, \ r_h(s,a) = \langle \phi(s,a), \theta_h \rangle.$$

- The action-value function Q^π_h(s, a) is also linear in the feature mapping φ (Jin et al., 2020), i.e., ∃w^π_h, Q^π_h(s, a) = ⟨φ(s, a), w^π_h⟩
 We assume that the offline data consists of K trajectories:
- Denote the dataset as D where D = {D_h}_{h∈[H]}. We assume D_{h1} is independent of D_{h2} for h₁ ≠ h₂. For each stage h, we have D_h = {(s_{k,h}, a_{k,h}, r_{k,h}, s'_{k,h})}_{k∈[K]}.

Notation and Technical Assumptions

 We define the following uncentered covariance matrix under behavior policy for all h ∈ [H]:

$$\Sigma_h = \mathbb{E}_{\bar{\pi},h} \left[\phi(s,a) \phi(s,a)^\top \right].$$
 (3.1)

Assumption (Coverage)

For all $h \in [H]$, $\kappa_h = \lambda_{\min}(\Sigma_h) > 0$.

• We define the weighted version of the covariance matrices:

$$\boldsymbol{\Lambda}_{h} = \mathbb{E}_{\bar{\pi},h} \left[\sigma_{h}(s,a)^{-2} \phi(s,a) \phi(s,a)^{\top} \right], \qquad (3.2)$$

where

$$\begin{split} \sigma_h(s,a) &\approx \sqrt{\mathbb{V}_h V_{h+1}^{\pi}(s,a)}, \\ [\mathbb{V}_h V_{h+1}^{\pi}](s,a) &= [\mathbb{P}_h(V_{h+1}^{\pi})^2](s,a) - \left([\mathbb{P}_h V_{h+1}^{\pi}](s,a)\right)^2, \\ [\mathbb{P}_h f](s,a) &= \int_{\mathcal{S}} f(s') \mathrm{d}\mathbb{P}_h(s'|s,a) = \phi(s,a)^{\top} \int_{\mathcal{S}} f(s') \mathrm{d}\mu_h(s'). \end{split}$$

Recap of results in Duan et al. (2020)

The dominant term in the error bound in Duan et al. (2020) is $\tilde{O}(\sum_{h=1}^{H}(H-h+1)\|\mathbf{v}_{h}^{\pi}\|_{\mathbf{\Sigma}_{h}^{-1}}/\sqrt{K})$ where H-h+1 is the trivial upper bound of $\sqrt{\mathbb{V}_{h}V_{h+1}}$

• We can do better by estimating $\mathbb{V}_h V_{h+1}$ more precisely To demonstrate the intuition, suppose we have iid samples $\{(s_{k,h}, a_{k,h}, s'_{k,h})\}_{k \in [K]}$, and the regression error is:

$$\mathsf{e}_k = \phi(s_{k,h}, \mathsf{a}_{k,h}) rac{[\mathbb{P}_h V_{h+1}^{\pi}](s_{k,h}, \mathsf{a}_{k,h}) - V_{h+1}^{\pi}(s_{k,h}')}{[\mathbb{V}_h V_{h+1}^{\pi}](s_{k,h}, \mathsf{a}_{k,h})^2}$$

By CLT, $\frac{1}{\sqrt{K}} \sum_{k=1}^{K} e_k \xrightarrow{d} \mathcal{N}(0, \operatorname{Cov}(e_k))$, so $\operatorname{Cov}(e_k)$ is the 'correct measure' of error

- This implies that we should use weighted regression
- But, how to estimate the variance?

Estimate Variance via regression

Variance of the value function:

$$[\mathbb{V}_h V_{h+1}^{\pi}](s,a) = [\mathbb{P}_h (V_{h+1}^{\pi})^2](s,a) - ([\mathbb{P}_h V_{h+1}^{\pi}](s,a))^2$$
$$= \underbrace{\phi(s,a)^\top \int_{\mathcal{S}} V_{h+1}^{\pi}(s')^2 \, \mathrm{d}\mu_h(s')}_{\text{linear in } \phi(s,a)} - (\underbrace{[\mathbb{P}_h V_{h+1}^{\pi}](s,a)}_{\text{linear in } \phi(s,a)})^2$$

Again, regression!

Algorithm: VA-OPE

Algorithm 1 Variance-Aware Off-Policy Evaluation (VA-OPE)

1: for
$$h = H, H - 1, ..., 1$$
 do
2: $\hat{\Sigma}_h \leftarrow \sum_{k=1}^{K} \check{\phi}_{k,h} \check{\phi}_{k,h}^{\top} + \lambda I_d$
3: $\hat{\beta}_h \leftarrow \hat{\Sigma}_h^{-1} \sum_{k=1}^{K} \check{\phi}_{k,h} \hat{V}_{h+1}^{\pi} (\check{s}'_{k,h})^2$ (estimate second moment)
4: $\hat{\theta}_h \leftarrow \hat{\Sigma}_h^{-1} \sum_{k=1}^{K} \check{\phi}_{k,h} \hat{V}_{h+1}^{\pi} (\check{s}'_{k,h})$ (estimate first moment)
5: $\hat{\sigma}_h(\cdot, \cdot) \leftarrow \sqrt{\max\{1, \hat{\mathbb{V}}_h \hat{V}_{h+1}^{\pi} (\cdot, \cdot)\} + 1}$ (estimate variance)
6: $\hat{\Lambda}_h \leftarrow \sum_{k=1}^{K} \phi_{k,h} \phi_{k,h}^{\top} / \hat{\sigma}_{k,h}^2 + \lambda I_d$ (backward
7: $Y_{k,h} \leftarrow r_{k,h} + \langle \phi_h^{\pi} (s'_{k,h}), \hat{w}_{h+1}^{\pi} \rangle$ weighted
8: $\hat{w}_h^{\pi} \leftarrow \hat{\Lambda}_h^{-1} \sum_{k=1}^{K} \phi_{k,h} Y_{k,h} / \hat{\sigma}_{k,h}^2$ regression)
9: $\hat{Q}_h^{\pi} (\cdot, \cdot) \leftarrow \langle \phi(\cdot, \cdot), \hat{w}_h^{\pi} \rangle, \quad \hat{V}_h^{\pi} (\cdot) \leftarrow \langle \phi_h^{\pi} (\cdot), \hat{w}_h^{\pi} \rangle$
10: end for
11: Output: $\hat{v}_1^{\pi} \leftarrow \int_{\mathcal{S}} \hat{V}_1^{\pi} (s) d\xi_1(s)$

Error bound for VA-OPE

Theorem (M., Wang, Zhou, Gu)

There exists some C such that with probability at least $1 - \delta$, the output of VA-OPE satisfies

$$|\mathbf{v}_1^{\pi} - \hat{\mathbf{v}}_1^{\pi}| \leq C \cdot \left[\sum_{h=1}^{H} \|\mathbf{v}_h^{\pi}\|_{\boldsymbol{\Lambda}_h^{-1}}\right] \cdot \sqrt{\frac{\log(16H/\delta)}{K}}$$

where $\mathsf{v}_h^{\pi} = \mathbb{E}_{\pi,h}[\phi(\mathsf{s}_h, \mathsf{a}_h)].$

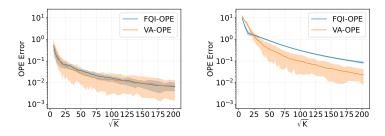
- $\sum_{h=1}^{H} \|\mathbf{v}_{h}^{\pi}\|_{\mathbf{\Lambda}_{h}^{-1}}$ characterizes the distribution shift between the target policy and behavior policy and is **instance-dependent** and **variance-aware**
- This recovers the result in Duan et al. (2020) in the worst case, and improves it by an order of Ω(H) in some cases

Numerical experiments

We test the performance of our algorithms on a hard-to-learn linear MDP instance (Zhou et al., 2021).

Numerical experiments

We test the performance of our algorithms on a hard-to-learn linear MDP instance (Zhou et al., 2021).



Comparison of VA-OPE and FQI-OPE under different settings of horizon length *H*. VA-OPE's advantage becomes more significant as *H* increases, matching the theoretical prediction. The results are averaged over 50 trials and the error bars denote an empirical [10%,90%] confidence interval.

- For off-policy evaluation in RL with linear function approximation, we propose a weighted regression-based algorithm, VA-OPE
- Theoretical analysis demonstrates the superiority of our proposed method
- We also evaluate the performance of VA-OPE empirically via synthetic experiments, which corroborate our theory

Thank you!

- DUAN, Y., JIA, Z. and WANG, M. (2020). Minimax-optimal off-policy evaluation with linear function approximation. In *International Conference on Machine Learning*. PMLR.
- JIANG, N. and LI, L. (2016). Doubly robust off-policy value evaluation for reinforcement learning. In *International Conference on Machine Learning*. PMLR.
- JIN, C., YANG, Z., WANG, Z. and JORDAN, M. I. (2020). Provably efficient reinforcement learning with linear function approximation. In *Conference on Learning Theory*. PMLR.
- PRECUP, D. (2000). Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty Publication Series 80.
- YANG, L. and WANG, M. (2019). Sample-optimal parametric q-learning using linearly additive features. In *International Conference on Machine Learning*.
- YIN, M., BAI, Y. and WANG, Y.-X. (2021). Near-optimal provable uniform convergence in offline policy evaluation for reinforcement learning. In *International Conference on Artificial Intelligence and Statistics*. PMLR.

ZHOU, D., HE, J. and GU, Q. (2021). Provably efficient reinforcement learning for discounted mdps with feature mapping. In *International Conference on Machine Learning*. PMLR.