Implicit Bias of Gradient Descent on **Reparametrized Models: On Equivalence to Mirror Descent**

Zhiyuan Li* Princeton

Tianhao Wang* Yale



Jason D. Lee Princeton

Sanjeev Arora Princeton

ICML, 2022

Background: Implicit Bias

- **Implicit bias:** special properties of the solution found by the optimization algorithm \bullet • Not implied by the value of the loss function
- - Arise from the trajectory taken in parameter space by the optimization
 - E.g., find sparse solutions without explicit ℓ_0 or ℓ_1 regularization
- Implicit bias is closely related to and can explain the generalization performance of algorithms There are different sources of implicit bias: parametrization, step size, noise, etc.
- In this work, we study the following question: •

• How do different parametrizations change the implicit bias of (continuous) gradient descent?

Problem Setting: Reparametrized Gradient Flow

- Consider a model with loss $L : \mathbb{R}^d \to \mathbb{R}$ and parameter $w \in \mathbb{R}^d$
- W =

=
$$G(x)$$
 for a parametrization $G : \mathbb{R}^D \to \mathbb{R}^d$ with $x \in \mathbb{R}^D$ $(D \ge d)$
• E.g., $w = G(x) = u \bigcirc 2 - v \bigcirc 2$ where $x = \begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{R}^{2d}$
Hadamard product

• w(t) = G(x(t)), where x(t) is given by the gradient flow on $L \circ G$: $dx(t) = -\nabla (L \circ G)(x(t))dt$

Understand the implicit bias via the lens of (continuous) mirror descent

Understand Implicit Bias via Mirror Descent

• Gradient flow: $dx(t) = -\nabla (L \circ G)(x(t))dt = -\partial G(x(t))^{\top} \nabla L(G(x(t))dt$

• w(t) = G(x(t)) admits the following dynamics: $dw(t) = \partial G(x(t))dx(t) = -\partial G(x(t))\partial G(x(t))^{\top} \nabla L(w(t))dt$

• Suppose there is some strictly convex function $R : \mathbb{R}^d \to \mathbb{R}$ such that $\nabla^2 R(w(t))^{-1} = \partial G(x(t)) \partial G(x(t))^{\top}$

• Then the dynamics of w(t) satisfies $\iff \mathrm{d} \nabla R(w(t)) = -\nabla L(w(t))\mathrm{d} t$

 $dw(t) = -\nabla^2 R(w(t))^{-1} \nabla L(w(t)) dt$ (Riemannian gradient flow) (Mirror flow)

Understand Implicit Bias via Mirror Descent (cont.)

can be described by the mirror flow

Gunasekar et al. (2018); Vaskevicius et al. (2019); Woodworth et al. (2020); Amid & Warmuth (2020); Azulay et al. (2021); Yun et al. (2021)

- then w_{∞} minimizes a convex regularizer among all optimal solutions:
 - $w_{\infty} = \arg\min D_R(w, w(0))$ w:optimal

- Question: When does $\nabla^2 R(w(t))^{-1} = \partial G(x(t)) \partial G(x(t))^{\mathsf{T}}$ hold?
- Our answer: When G is a 'commuting parametrization'

$\nabla^2 R(w(t))^{-1} = \partial G(x(t)) \partial G(x(t))^{\mathsf{T}}$ $dx(t) = -\nabla (L \circ G)(x(t)) dt \; (\mathsf{GF}) \iff d\nabla R(w(t)) = -\nabla L(w(t)) dt \; (\mathsf{MF})$

Previous works presented several settings where the implicit bias of gradient flow

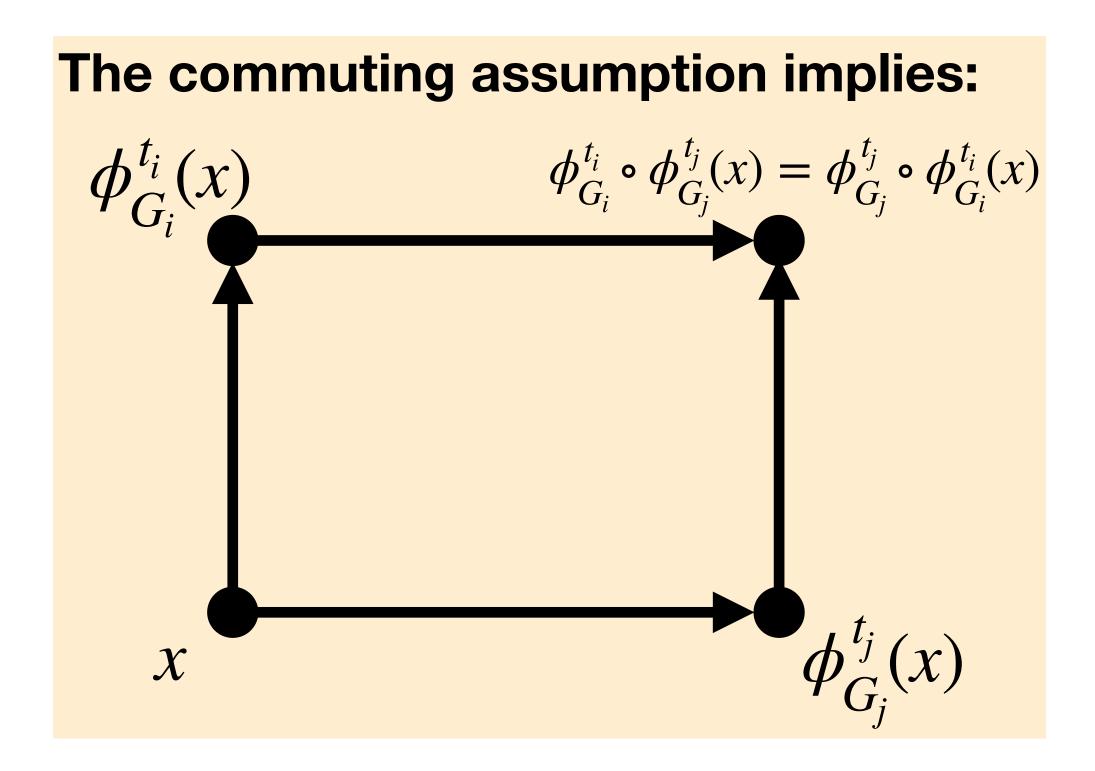
• Result (linear model): If as $t \to \infty$, w(t) converges to some optimal solution w_{∞} ,

Notations

- Let $M \subseteq \mathbb{R}^D$ be a simply-connected open set (can be any smooth submanifold) • For $w = u^{\odot 2} - v^{\odot 2}$, can choose $M = \{(u, v) : u, v \in \mathbb{R}^d_+\}$
- For a parametrization $G: M \to \mathbb{R}^d$, $G(x) = [G_1(x), ..., G_d(x)]^\top$, Jacobian $\partial G(x) = [\nabla G_1(x), ..., \nabla G_d(x)]^\top$
- $\phi_{G}^{t}(x)$ denotes the solution at time t to dq
- Further define $\psi(x;\mu) = \phi_{G_1}^{\mu_1} \circ \phi_{G_2}^{\mu_2} \circ \cdots \circ \phi_{G_d}^{\mu_d}(x)$ for each $\mu \in \mathbb{R}^d$

$$\phi_{G_i}^t(x) = -\nabla G_i(\phi_{G_i}^t(x)) dt$$

Lie bracket $[\nabla G_i, \nabla G_i](x) = \nabla^2 G_i(x) \nabla G_i(x) - \nabla^2 G_i(x) \nabla G_i(x)$



Commuting Parametrization

<u>Def. (commuting parametrization)</u>: Let $G : M \to \mathbb{R}^d$ be a parametrization. We say G is a *commuting parametrization* if $[\nabla G_i, \nabla G_j](x) = 0$ for all $x \in M$ and $i, j \in [d]$.

Example: $w = G(x) = u^{\odot 2} - v^{\odot 2}$

• Each $G_i(x)$ only depends on (u_i, v_i)

•
$$\nabla G_i(x) = 2u_i \overrightarrow{e_i} - 2v_i \overrightarrow{e_{d+i}}$$

- { ∇G_i }^d_{i=1} live in different subspaces
- $[\nabla G_i, \nabla G_j](x) \equiv 0, \forall i, j \in [d]$
- In this case, G is a commuting parametrization

Main Results: GF+Commuting \Longrightarrow MF

Lemma 1 Let $G: M \to \mathbb{R}^d$ be a commuting parametrization. Let x(t) follow the gradient flow on $L \circ G$ with $x(0) = x_{init}$, and define $\mu(t) = \int_0^t -\nabla L(G(x(s))) ds$. Then $x(t) = \psi(x_{init}; \mu(t))$.

• The gradient flow is determined by the integral of the negative gradient of the loss

Lemma 2 Let $G : M \to \mathbb{R}^d$ be a commuting parametrization. Then for any $x_{init} \in M$, there exists a strictly convex function Q such that $\nabla Q(\mu) = G(\psi(x_{init}; \mu))$ for all μ . Moreover, let R be the convex conjugate of Q, then denoting $x = \psi(x_{init}; \mu)$, R satisfies $\nabla^2 R(w)^{-1} = \partial G(x) \partial G(x)^{\top}$, where w = G(x)

<u>Remark</u> This R only depends on the initialization x_{init} and the parametrization G, and is independent of the loss

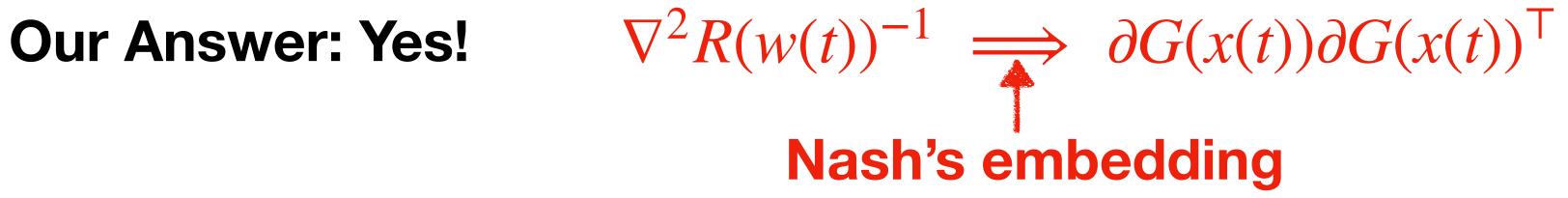
<u>Theorem</u> Every gradient flow with commuting parametrization is a mirror flow. $dx(t) = -\nabla (L \circ G)(x(t))dt \ (GF) \quad \iff \quad$

Commuting Param.

 $d\nabla R(w(t)) = -\nabla L(w(t))dt$ (MF)

Main Results: $MF \implies GF+Commuting$

Conversely, given any mirror flow, can it be reparametrized as a gradient flow? A similar question has been proposed by Amid & Warmuth (2020)



loss L with respect to R. There exists a commuting parametrization $G: M \to \mathbb{R}^d$ such that w(t) = G(x(t)), where x(t) admits the gradient flow on $L \circ G$.

• This is an existence result, not a constructive one

- **<u>Theorem</u>** For any smooth mirror map R, consider w(t) admitting the mirror flow on

Summary of Our Contributions

- be written as a mirror flow on *w*
- results for underdetermined linear regression
- written as a gradient flow with some reparametrization in a possibly higherdimensional space

• We identify a notion of when a parametrization w = G(x) is commuting, and use it to give a sufficient and (almost) necessary condition for when the gradient flow on x can

• Using the above characterization, we recover and generalize existing implicit bias

Conversely, we use Nash's embedding theorem to show that every mirror flow can be

Thank You!

arXiv: <u>2207.04036</u>