ICML, 2022

Zhiyuan Li*** Tianhao Wang*** Jason D. Lee Sanjeev Arora Princeton Yale Princeton Princeton

Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent

1

Background: Implicit Bias

- **• Implicit bias:** special properties of the solution found by the optimization algorithm • *Not* implied by the value of the loss function
- - *•* Arise from the trajectory taken in parameter space by the optimization
	- E.g., find sparse solutions without explicit ℓ_0 or ℓ_1 regularization
- *•* Implicit bias is closely related to and can explain the generalization performance of algorithms *•* There are different sources of implicit bias: parametrization, step size, noise, etc.
-
- *•* In this work, we study the following question:
	-

• How do different parametrizations change the implicit bias of (continuous) gradient descent?

Problem Setting: Reparametrized Gradient Flow

- Consider a model with loss $L: \mathbb{R}^d \to \mathbb{R}$ and parameter $w \in \mathbb{R}^d$
-

• Understand the implicit bias via the lens of (continuous) mirror descent

\n- $$
w = G(x)
$$
 for a parametrization $G : \mathbb{R}^D \to \mathbb{R}^d$ with $x \in \mathbb{R}^D$ $(D \ge d)$
\n- E.g., $w = G(x) = u^{\odot 2} - v^{\odot 2}$ where $x = \begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{R}^{2d}$
\n

• $w(t) = G(x(t))$, where $x(t)$ is given by the gradient flow on $L \circ G$: $dx(t) = - \nabla (L \cdot G)(x(t))dt$

Understand Implicit Bias via Mirror Descent

• Gradient flow: $dx(t) = - \nabla(L \cdot G)(x(t))dt = - \partial G(x(t))^T \nabla L(G(x(t))dt)$

• $w(t) = G(x(t))$ admits the following dynamics: $dw(t) = \partial G(x(t))dx(t) = -\partial G(x(t))\partial G(x(t))^{\top} \nabla L(w(t))dt$

• Suppose there is some strictly convex function $R: \mathbb{R}^d \to \mathbb{R}$ such that $\nabla^2 R(w(t))^{-1} = \partial G(x(t)) \partial G(x(t))^\top$

• Then the dynamics of *w*(*t*) satisfies $\iff d \nabla R(w(t)) = - \nabla L(w(t))dt$ (Mirror flow)

 $dw(t) = -\nabla^2 R(w(t))^{-1} \nabla L(w(t)) dt$ (Riemannian gradient flow)

Understand Implicit Bias via Mirror Descent (cont.)

• Previous works presented several settings where the implicit bias of gradient flow

• Result (linear model): If as $t \to \infty$, $w(t)$ converges to some optimal solution w_{∞} ,

can be described by the mirror flow

 $w_{\infty} = \arg \min_{M} D_R(w, w(0))$ *w*:optimal

- Question: When does $\nabla^2 R(w(t))^{-1} = \partial G(x(t)) \partial G(x(t))^T$ hold?
- Our answer: When G is a 'commuting parametrization'

$dx(t) = -\nabla(L \cdot G)(x(t))dt$ (GF) $\iff d\nabla R(w(t)) = -\nabla L(w(t))dt$ (MF) $\nabla^2 R(w(t))^{-1} = \partial G(x(t)) \partial G(x(t))^\top$

Gunasekar et al. (2018); Vaskevicius et al. (2019); Woodworth et al. (2020); Amid & Warmuth (2020); Azulay et al. (2021); Yun et al. (2021) ……

- then w_{∞} minimizes a convex regularizer among all optimal solutions:
	-

Notations

- Let $M\subseteq\mathbb{R}^D$ be a simply-connected open set (can be any smooth submanifold) • For $w = u^{\odot 2} - v^{\odot 2}$, can choose $M = \{(u, v) : u, v \in \mathbb{R}^d_+\}$
- For a parametrization $G: M \to \mathbb{R}^d$, $G(x) = [G_1(x), ..., G_d(x)]^\top$, Jacobian $\partial G(x) = [\nabla G_1(x), \ldots, \nabla G_d(x)]$ ⊤
- $\phi_{G_i}^t(x)$ denotes the solution at time t to *Gi* $f(x)$ denotes the solution at time t to $d\phi^t$
- Further define $\psi(x;\mu)=\phi_{G_1}^{\mu_1}\circ\phi_{G_2}^{\mu_2}\circ\cdots\circ\phi_{G_d}^{\mu_d}(x)$ for each $\psi(x;\mu) = \phi_{G}^{\mu_1}$ G_1 \circ $\phi_{G}^{\mu_2}$ G_2 $\bullet \cdots \circ \phi^{\mu_d}_{G}$

 $\begin{pmatrix} d \\ + \end{pmatrix}$

Gd $f(x)$ for each $\mu \in \mathbb{R}^d$

$$
\phi_{G_i}^t(x) = -\nabla G_i(\phi_{G_i}^t(x))dt
$$

Lie bracket $[\,\nabla G_i,\nabla G_j](x) = \nabla^2 G_j(x) \,\nabla G_i(x) - \nabla^2 G_i(x) \,\nabla G_j(x)$

Commuting Parametrization

<u>Def. (commuting parametrization):</u> Let $G: M \to \mathbb{R}^d$ be a parametrization. We say is a *commuting parametrization* if $[\nabla G_i, \nabla G_j](x) = 0$ for all $x \in M$ and $i, j \in [d]$. $G: M \to \mathbb{R}^d$ G is a *commuting parametrization* if $[\; \nabla\, G_i, \nabla\, G_j](x) = 0$ for all $x \in M$ and $i, j \in [d]$

Example: $w = G(x) = u^{O2} - v^{O2}$

• Each $G_i(x)$ only depends on (u_i, v_i)

•
$$
\nabla G_i(x) = 2u_i \vec{e}_i - 2v_i \vec{e}_{d+i}
$$

- $\{\nabla G_i\}_{i=1}^d$ live in different subspaces *i*=1
- $[\nabla G_i, \nabla G_j](x) \equiv 0, \forall i, j \in [d]$
- \bullet In this case, G is a commuting parametrization

Main Results: GF+Commuting \Longrightarrow **MF**

<u>Lemma 1</u> Let $G: M \to \mathbb{R}^d$ be a commuting parametrization. Let $x(t)$ follow the gradient flow on L ∘ G with $x(0) = x_{\text{init}}$, and define $\mu(t) = \int_{0}^{t} -\nabla L(G(x(s))) \mathrm{d}s$. Then $x(t) = \psi(x_{\text{init}}; \mu(t)).$ *t* 0 $-\nabla L(G(x(s)))\,$ ds. Then $x(t) = \psi(x_{init}; \mu(t))$

Theorem Every gradient flow with commuting parametrization is a mirror flow. $dx(t) = -\nabla(L \cdot G)(x(t))dt$ (GF) \iff $d\nabla R(w(t)) = -\nabla L(w(t))dt$ (MF)

8

Commuting Param.

• The gradient flow is determined by the integral of the negative gradient of the loss

<u>Lemma 2</u> Let $G:M\to\mathbb{R}^d$ be a commuting parametrization. Then for any $x_{\text{init}}\in M$, there exists a strictly convex function Q such that $\nabla Q(\mu) = G(\psi(x_{\text{init}}; \mu))$ for all μ . Moreover, let R be the convex conjugate of Q , then denoting $x = \psi(x_{\text{init}}; \mu)$, R satisfies $\nabla^2 R(w)^{-1} = \partial G(x) \partial G(x)^{\top}$, where $w = G(x)$ $G: M \to \mathbb{R}^d$ be a commuting parametrization. Then for any $x_{\text{init}} \in M$ *Q* such that $\nabla Q(\mu) = G(\psi(x_{init}; \mu))$ for all μ . Moreover, let R

Remark This *R* only depends on the initialization x_{init} and the parametrization G , and is independent of the loss

Main Results: MF**^oB** GF+Commuting

Conversely, given any mirror flow, can it be reparametrized as a gradient flow? • A similar question has been proposed by Amid & Warmuth (2020)

loss L with respect to $R.$ There exists a commuting parametrization $G:M\rightarrow \mathbb{R}^d$ such that $w(t) = G(x(t))$, where $x(t)$ admits the gradient flow on L \circ $G.$

• This is an existence result, not a constructive one

-
- $-1 \implies \partial G(x(t))\partial G(x(t))^{\top}$
	-
- **Theorem** For any smooth mirror map R , consider $w(t)$ admitting the mirror flow on
	-

Summary of Our Contributions

- be written as a mirror flow on *w*
- results for underdetermined linear regression
- written as a gradient flow with some reparametrization in a possibly higherdimensional space

• We identify a notion of when a parametrization $w = G(x)$ is commuting, and use it to give a sufficient and (almost) necessary condition for when the gradient flow on x can

• Using the above characterization, we recover and generalize existing implicit bias

• Conversely, we use Nash's embedding theorem to show that every mirror flow can be

Thank You!

arXiv: 2207.04036